Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine

Authors

  • Bahman Mehdizadeh Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
  • kamyar Movagharnejad Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
Abstract:

Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation state-based models, i.e. SRK-EOS and PR-EOS and four empirical equations, i.e. Whitson, Standing, Wilson and Ghafoori et al. Compared to the experimental data, the average relative deviations (ARD) of bubble pressure prediction for these equations were obtained to be 14%, 29%, 66%, 30%, 38%, and 11%, respectively. The best semi-empirical equation has an ARD of about 11% while, the ANN and LS-SVM models have an ARD of 8% and 4.68%, respectively. Thus, it can be concluded that generally, these soft computing models appear to be more accurate than the empirical and EOS based methods for prediction of bubble point pressure of reservoir fluids.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

estimation of river bedform dimension using artificial neural network (ann) and support vector machine (svm)

movement of sediment in the river causes many changes in the river bed. these changes are called bedform. river bedform has significant and direct effects on bed roughness, flow resistance, and water surface profile. thus, having adequate knowledge of the bedform is of special importance in river engineering. several methods have been developed by researchers for estimation of bed form dimensio...

full text

Image Classification using Support Vector Machine and Artificial Neural Network

Image classification is one of classical problems of concern in image processing. There are various approaches for solving this problem. The aim of this paper is bring together two areas in which are Artificial Neural Network (ANN) and Support Vector Machine (SVM) applying for image classification. Firstly, we separate the image into many sub-images based on the features of images. Each sub-ima...

full text

Prediction of Software Effort Using Artificial Neural Network and Support Vector Machine

Accurately estimating software effort is probably the biggest challenge facing software developers. Estimates done at the proposal stage has high degree of inaccuracy, where requirements for the scope are not defined to the lowest details, but as the project progresses and requirements are elaborated, accuracy and confidence on estimate increases. It is important to choose the right software ef...

full text

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

full text

Prediction of ultimate strength of shale using artificial neural network

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 53  issue 2

pages  177- 189

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023